Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2551: 575-593, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36310226

RESUMO

Liquid-liquid phase separation (LLPS) has emerged as a common biophysical event that facilitates the formation of non-membrane-bound cellular compartments, also termed biomolecular condensates. Since the first report of a biomolecular condensate in the germline of C. elegans, many regulatory hubs have been shown to have similar liquid-like features. With the wealth of molecules now being reported to possess liquid-like features, an impetus has been placed on reconciling LLPS with regulation of specific biological properties in vivo. Herein, we report a methodology used to study LLPS-associated features in C. elegans neurons, illustrated using the RNA granule protein TIAR-2. In axons, TIAR-2 forms liquid-like granules, which following injury are inhibitory to the regeneration process. Measuring the dynamics of TIAR-2 granules provides a tractable biological output to study LLPS function. In conjunction with other established methods to assess LLPS, the results from the protocol outlined provide comprehensive insight regarding this important biophysical property.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Condensados Biomoleculares , Proteínas de Caenorhabditis elegans/genética , Células Germinativas/metabolismo , Axônios/metabolismo
2.
Neuron ; 104(2): 290-304.e8, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31378567

RESUMO

Phase separation into liquid-like compartments is an emerging property of proteins containing prion-like domains (PrLDs), yet the in vivo roles of phase separation remain poorly understood. TIA proteins contain a C-terminal PrLD, and mutations in the PrLD are associated with several diseases. Here, we show that the C. elegans TIAR-2/TIA protein functions cell autonomously to inhibit axon regeneration. TIAR-2 undergoes liquid-liquid phase separation in vitro and forms granules with liquid-like properties in vivo. Axon injury induces a transient increase in TIAR-2 granule number. The PrLD is necessary and sufficient for granule formation and inhibiting regeneration. Tyrosine residues within the PrLD are important for granule formation and inhibition of regeneration. TIAR-2 is also serine phosphorylated in vivo. Non-phosphorylatable TIAR-2 variants do not form granules and are unable to inhibit axon regeneration. Our data demonstrate an in vivo function for phase-separated TIAR-2 and identify features critical for its function in axon regeneration.


Assuntos
Axônios/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Regeneração Nervosa/fisiologia , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Animais , Axônios/fisiologia , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Compartimento Celular , Grânulos Citoplasmáticos , Domínios Proteicos , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Antígeno-1 Intracelular de Células T/genética , Antígeno-1 Intracelular de Células T/metabolismo
3.
Elife ; 72018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30461420

RESUMO

The mechanisms underlying axon regeneration in mature neurons are relevant to the understanding of normal nervous system maintenance and for developing therapeutic strategies for injury. Here, we report novel pathways in axon regeneration, identified by extending our previous function-based screen using the C. elegans mechanosensory neuron axotomy model. We identify an unexpected role of the nicotinamide adenine dinucleotide (NAD+) synthesizing enzyme, NMAT-2/NMNAT, in axon regeneration. NMAT-2 inhibits axon regrowth via cell-autonomous and non-autonomous mechanisms. NMAT-2 enzymatic activity is required to repress regrowth. Further, we find differential requirements for proteins in membrane contact site, components and regulators of the extracellular matrix, membrane trafficking, microtubule and actin cytoskeleton, the conserved Kelch-domain protein IVNS-1, and the orphan transporter MFSD-6 in axon regrowth. Identification of these new pathways expands our understanding of the molecular basis of axonal injury response and regeneration.


Assuntos
Axônios/metabolismo , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , NAD/metabolismo , Regeneração Nervosa/genética , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Animais , Axônios/ultraestrutura , Axotomia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Testes Genéticos , Repetição Kelch , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Anotação de Sequência Molecular , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo
4.
Neuron ; 97(3): 511-519.e6, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29395906

RESUMO

The PIWI-interacting RNA (piRNA) pathway has long been thought to function solely in the germline, but evidence for its functions in somatic cells is emerging. Here we report an unexpected role for the piRNA pathway in Caenorhabditis elegans sensory axon regeneration after injury. Loss of function in a subset of components of the piRNA pathway results in enhanced axon regrowth. Two essential piRNA factors, PRDE-1 and PRG-1/PIWI, inhibit axon regeneration in a gonad-independent and cell-autonomous manner. By smFISH analysis we find that prde-1 transcripts are present in neurons, as well as germ cells. The piRNA pathway inhibits axon regrowth independent of nuclear transcriptional silencing but dependent on the slicer domain of PRG-1/PIWI, suggesting that post-transcriptional gene silencing is involved. Our results reveal the neuronal piRNA pathway as a novel intrinsic repressor of axon regeneration.


Assuntos
Proteínas Argonautas/metabolismo , Axônios/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , RNA Interferente Pequeno/metabolismo , Regeneração , Animais , Caenorhabditis elegans , Células Germinativas/metabolismo , Transdução de Sinais
5.
J Biol Chem ; 291(15): 7796-804, 2016 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-26907690

RESUMO

Stress-associated p38 and JNK mitogen-activated protein (MAP) kinase signaling cascades trigger specific cellular responses and are involved in multiple disease states. At the root of MAP kinase signaling complexity is the differential use of common components on a context-specific basis. The roundwormCaenorhabditis eleganswas developed as a system to study genes required for development and nervous system function. The powerful genetics ofC. elegansin combination with molecular and cellular dissections has led to a greater understanding of how p38 and JNK signaling affects many biological processes under normal and stress conditions. This review focuses on the studies revealing context specificity of different stress-activated MAPK components inC. elegans.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Estresse Fisiológico , Animais , Caenorhabditis elegans/imunologia , Proteínas de Caenorhabditis elegans/imunologia , Imunidade Inata , Janus Quinases/imunologia , Janus Quinases/metabolismo , Proteínas Quinases Ativadas por Mitógeno/imunologia
6.
Cell Cycle ; 12(9): 1416-23, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23574720

RESUMO

Neuronal survival is dependent upon the retinoblastoma family members, Rb1 (Rb) and Rb2 (p130). Rb is thought to regulate gene repression, in part, through direct recruitment of chromatin modifying enzymes to its conserved LXCXE binding domain. We sought to examine the mechanisms that Rb employs to mediate cell cycle gene repression in terminally differentiated cortical neurons. Here, we report that Rb loss converts chromatin at the promoters of E2f-target genes to an activated state. We established a mouse model system in which Rb-LXCXE interactions could be induciblely disabled. Surprisingly, this had no effect on survival or gene silencing in neuronal quiescence. Absence of the Rb LXCXE-binding domain in neurons is compatible with gene repression and long-term survival, unlike Rb deficiency. Finally, we are able to show that chromatin activation following Rb deletion occurs at the level of E2fs. Blocking E2f-mediated transcription downstream of Rb loss is sufficient to maintain chromatin in an inactive state. Taken together our results suggest a model whereby Rb-E2f interactions are sufficient to maintain gene repression irrespective of LXCXE-dependent chromatin remodeling.


Assuntos
Ciclo Celular , Montagem e Desmontagem da Cromatina , Fatores de Transcrição E2F/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Proteína do Retinoblastoma/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sobrevivência Celular , Cromatina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estrutura Terciária de Proteína
7.
Cell Stem Cell ; 12(4): 440-52, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23499385

RESUMO

The mechanisms through which cell-cycle control and cell-fate decisions are coordinated in proliferating stem cell populations are largely unknown. Here, we show that E2f3 isoforms, which control cell-cycle progression in cooperation with the retinoblastoma protein (pRb), have critical effects during developmental and adult neurogenesis. Loss of either E2f3 isoform disrupts Sox2 gene regulation and the balance between precursor maintenance and differentiation in the developing cortex. Both isoforms target the Sox2 locus to maintain baseline levels of Sox2 expression but antagonistically regulate Sox2 levels to instruct fate choices. E2f3-mediated regulation of Sox2 and precursor cell fate extends to the adult brain, where E2f3a loss results in defects in hippocampal neurogenesis and memory formation. Our results demonstrate a mechanism by which E2f3a and E2f3b differentially regulate Sox2 dosage in neural precursors, a finding that may have broad implications for the regulation of diverse stem cell populations.


Assuntos
Ciclo Celular , Fator de Transcrição E2F3/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Fatores de Transcrição SOXB1/genética , Envelhecimento/metabolismo , Animais , Sequência de Bases , Contagem de Células , Ciclo Celular/genética , Linhagem da Célula/genética , Proliferação de Células , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Modelos Biológicos , Dados de Sequência Molecular , Neurogênese , Regiões Promotoras Genéticas/genética , Isoformas de Proteínas/metabolismo , Fatores de Transcrição SOXB1/metabolismo
8.
J Neurosci ; 32(42): 14809-14, 2012 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-23077065

RESUMO

The retinoblastoma protein (Rb) family members are essential regulators of cell cycle progression, principally through regulation of the E2f transcription factors. Growing evidence indicates that abnormal cell cycle signals can participate in neuronal death. In this regard, the role of Rb (p105) itself has been controversial. Germline Rb deletion leads to massive neuronal loss, but initial reports argue that death is non-cell autonomous. To more definitively resolve this question, we generated acute murine knock-out models of Rb in terminally differentiated neurons in vitro and in vivo. Surprisingly, we report that acute inactivation of Rb in postmitotic neurons results in ectopic cell cycle protein expression and neuronal loss without concurrent induction of classical E2f-mediated apoptotic genes, such as Apaf1 or Puma. These results suggest that terminally differentiated neurons require Rb for continuous cell cycle repression and survival.


Assuntos
Sobrevivência Celular/fisiologia , Mitose/fisiologia , Neurônios/fisiologia , Proteína do Retinoblastoma/fisiologia , Animais , Morte Celular/genética , Morte Celular/fisiologia , Sobrevivência Celular/genética , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitose/genética , Proteína do Retinoblastoma/deficiência
9.
J Neurosci ; 32(24): 8219-30, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22699903

RESUMO

During brain morphogenesis, the mechanisms through which the cell cycle machinery integrates with differentiation signals remain elusive. Here we show that the Rb/E2F pathway regulates key aspects of differentiation and migration through direct control of the Dlx1 and Dlx2 homeodomain proteins, required for interneuron specification. Rb deficiency results in a dramatic reduction of Dlx1 and Dlx2 gene expression manifested by loss of interneuron subtypes and severe migration defects in the mouse brain. The Rb/E2F pathway modulates Dlx1/Dlx2 regulation through direct interaction with a Dlx forebrain-specific enhancer, I12b, and the Dlx1/Dlx2 proximal promoter regions, through repressor E2F sites both in vitro and in vivo. In the absence of Rb, we demonstrate that repressor E2Fs inhibit Dlx transcription at the Dlx1/Dlx2 promoters and Dlx1/2-I12b enhancer to suppress differentiation. Our findings support a model whereby the cell cycle machinery not only controls cell division but also modulates neuronal differentiation and migration through direct regulation of the Dlx1/Dlx2 bigene cluster during embryonic development.


Assuntos
Fatores de Transcrição E2F/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/biossíntese , Neurogênese/fisiologia , Proteína do Retinoblastoma/fisiologia , Fatores de Transcrição/biossíntese , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Contagem de Células/métodos , Feminino , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Gravidez , Transdução de Sinais/fisiologia
10.
Mol Cell Biol ; 31(2): 238-47, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21059867

RESUMO

The Rb/E2F pathway has long been appreciated for its role in regulating cell cycle progression. Emerging evidence indicates that it also influences physiological events beyond regulation of the cell cycle. We have previously described a requirement for Rb/E2F mediating neuronal migration; however, the molecular mechanisms remain unknown, making this an ideal system to identify Rb/E2F-mediated atypical gene regulation in vivo. Here, we report that Rb regulates the expression of neogenin, a gene encoding a receptor involved in cell migration and axon guidance. Rb is capable of repressing E2F-mediated neogenin expression while E2F3 occupies a region containing E2F consensus sites on the neogenin promoter in native chromatin. Absence of Rb results in aberrant neuronal migration and adhesion in response to netrin-1, a known ligand for neogenin. Increased expression of neogenin through ex vivo electroporation results in impaired neuronal migration similar to that detected in forebrain-specific Rb deficiency. These findings show direct regulation of neogenin by the Rb/E2F pathway and demonstrate that regulation of neogenin expression is required for neural precursor migration. These studies identify a novel mechanism through which Rb regulates transcription of a gene beyond the classical E2F targets to regulate events distinct from cell cycle progression.


Assuntos
Movimento Celular/fisiologia , Fator de Transcrição E2F3/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Membrana/metabolismo , Neurônios/fisiologia , Proteína do Retinoblastoma/metabolismo , Animais , Adesão Celular/fisiologia , Fator de Transcrição E2F3/genética , Células HEK293 , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Netrina-1 , Neurônios/citologia , Regiões Promotoras Genéticas , Prosencéfalo/anatomia & histologia , Prosencéfalo/embriologia , Prosencéfalo/metabolismo , Proteína do Retinoblastoma/genética , Transcrição Gênica , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
11.
Mol Cell Biol ; 29(17): 4701-13, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19564414

RESUMO

We have previously shown that p107, a member of the retinoblastoma (Rb) cell cycle regulatory family, has a unique function in regulating the pool of neural precursor cells. As the pool of progenitors is regulated by a limiting supply of trophic factors, we asked if the Rb/E2F pathway may control the size of the progenitor population by regulating the levels of growth factors or their receptors. Here, we demonstrate that fibroblast growth factor 2 (FGF2) is aberrantly upregulated in the brains of animals lacking Rb family proteins and that the gene encoding the FGF2 ligand is directly regulated by p107 and E2F3. Chromatin immunoprecipitation assays demonstrated that E2F3 and p107 occupy E2F consensus sites on the FGF2 promoter in the context of native chromatin. To evaluate the physiological consequence of FGF2 deregulation in both p107 and E2F3 mutants, we measured neural progenitor responsiveness to growth factors. Our results demonstrate that E2F3 and p107 are each mediators of FGF2 growth factor responsiveness in neural progenitor cells. These results support a model whereby p107 regulates the pool of FGF-responsive progenitors by directly regulating FGF2 gene expression in vivo. By identifying novel roles for p107/E2F in regulating genes outside of the classical cell cycle machinery targets, we uncover a new mechanism whereby Rb/E2F mediates proliferation through regulating growth factor responsiveness.


Assuntos
Fator de Transcrição E2F3/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Neurônios/fisiologia , Transdução de Sinais/fisiologia , Células-Tronco/fisiologia , Animais , Sequência de Bases , Proliferação de Células , Células Cultivadas , Fator de Transcrição E2F3/genética , Feminino , Fator 2 de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Neurônios/citologia , Gravidez , Regiões Promotoras Genéticas , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Proteína p107 Retinoblastoma-Like/genética , Proteína p107 Retinoblastoma-Like/metabolismo , Alinhamento de Sequência , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...